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Abstract. Two integrable nonlinear equations are derived by dimensional reductions of theSU(2)
self-dual Yang–Mills equations. To derive the equations, we use Hirota’s method and some
properties of special functions, namely those of the Bessel and Legendre functions. Solutions of
these equations are represented in terms of Toeplitz determinants whose elements are a superposition
of the special functions.

1. Introduction

The self-dual Yang–Mills (SDYM) equations are one of the most important nonlinear systems
in four dimensions not only due to their physical significance but because of their mathematical
feature of complete integrability. Exact solutions of the SDYM equations have been obtained
by the Riemann–Hilbert problems [1] or the Bäcklund transformations [2, 3]. Furthermore,
many important soliton equations are known to be derivable from the SDYM equations by
dimensional reductions and suitable choices of the gauge. This line of investigation begins
with the pioneering work of Ward [4] in which he showed that the Toda lattice equation, the
sine–Gordon equation, the chiral field equations, the Ernst equation, etc, could all be obtained
by the reductions of the SDYM equations. Inspired by Ward’s work, many other soliton
equations have subsequently been shown to be derived from the SDYM equations, including
the Korteweg–de Vries (KdV) and nonlinear Schrödinger (NLS) [5] equations.

In our previous paper [6], we have applied Hirota’s method to the SDYM equations in
anSU(2) gauge theory. The bilinear forms of the SDYM equations were found to be very
different from the bilinear forms that appear in the KP hierarchy. The solutions of the bilinear
forms were expressed by the Toeplitz determinants whose elements satisfy linear equations
called ‘dispersion relations’. We also discussed some (2+1)-dimensional integrable equations
reduced from the SDYM equations. Though Hirota’s method is one of the most powerful
means of obtaining exact soliton solutions explicitly, there are few works that have applied
Hirota’s method to the SDYM equations.

In this paper, based on Hirota’s method for the SDYM equation, we discuss another type of
dimensional reduction of the SDYM equations. Namely, instead of performing a dimensional
reduction on the SDYM equations directly, we first derive (1 + 1)-dimensional bilinear forms.
To obtain the reduced bilinear forms, we replace the four-dimensional dispersion relations
of the SDYM equations with some (1 + 1)-dimensional dispersion relations by using raising
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and lowering operators of special functions. Then, we obtain reduced equations from the
reduced bilinear forms. A similar situation is found in the reduction from the two-dimensional
Toda lattice equation to the cylindrical Toda lattice equation [7]. We consider, in particular,
the case of the Bessel and the Legendre functions in this paper. The reduction of using the
Bessel function corresponds to doubly cylindrical reduction from the four-dimensional SDYM
equation. Solutions of the reduced equations are represented in terms of Toeplitz determinants
whose elements are expressed by the Bessel and the Legendre functions, respectively.

In section 2, we briefly review the bilinear forms and determinant solutions of theSU(2)-
SDYM equations. In section 3, at first, we derive (1 + 1)-dimensional bilinear forms by using
raising and lowering operators of the Bessel function. Then, we construct (1 + 1)-dimensional
equations from the bilinear forms. We also give variable transformations from the four-
dimensional SDYM equation to the reduced equation. The solutions of the equations are
expressed by Toeplitz determinants whose elements are superpositions of the Bessel function.
In section 4, we discuss the second example, i.e. the integrable reduction by the Legendre
function. We give the reduced bilinear forms by using raising and lowering operators of the
Legendre function. The reduced equation is derived from the bilinear forms. Section 5 is
devoted to concluding remarks.

2. Self-dual Yang–Mills equation

In this section, we briefly review some properties of the SDYM equations which follow from
theSU(2)-SDYM gauge theory.

In theSU(2) gauge theory, the SDYM equations are written explicitly by using a matrix
J (∈ SL(2)) which depends on four independent variablesy, ȳ, z andz̄,

∂ȳ(J
−1∂yJ ) + ∂z̄(J

−1∂zJ ) = 0 (1)

where

J = 1

f

(
1 −g
e f 2 − eg

)
. (2)

Our parametrization of theSL(2)matrix in terms of the variablese, f , g follows the notation
of Corriganet al [3]. It should be noted that, for real gauge fields, we requireȳ = y∗, z̄ = z∗,
f = real andg = −e∗ (* denotes complex conjugate).

As is discussed in a previous paper [6], the bilinear forms of equation (1) are given by

Dyτnm · τn+1m−1 = −Dz̄τn+1m · τnm−1 (3)

Dzτnm · τn+1m−1 = Dȳτn+1m · τnm−1 (4)

and

τn+1mτn−1m − τ 2
nm = τnm+1τnm−1 (5)

whereD is Hirota’s bilinear operator defined asDya · b = (∂ya)b − a(∂yb). Theτnms are
m×m Toeplitz (Toda-molecule)-type determinants,

τnm =

∣∣∣∣∣∣∣∣∣∣∣

ϕn−m−1 · · · ϕn−2 ϕn−1 ϕn

ϕn−m · · · ϕn−1 ϕn ϕn+1

ϕn−m+1 · · · ϕn ϕn+1 ϕn+2

... · · · ...
...

...

ϕn · · · ϕn+m−3 ϕn+m−2 ϕn+m−1

∣∣∣∣∣∣∣∣∣∣∣
(6)
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wheren is an integer and the elementsϕj (for an integerj ) are functions of the four independent
variablesy, ȳ, z andz̄, which satisfy the dispersion relations,

∂yϕj = −∂z̄ϕj+1 (7)

∂zϕj = ∂ȳϕj+1. (8)

Form = 0, we defineτn0 = 1.
By using theτnms, it is shown that equation (1) has the following series of solutions:

e(1) = τn+1m−1

τnm
f (1) = τnm−1

τnm
g(1) = τn−1m−1

τnm
(9)

and

e(2) = τn−1m+1

τnm
f (2) = τnm+1

τnm
g(2) = τn+1m+1

τnm
. (10)

Recasting into the matrix form, the solutions (9) and (10) each become,

J (1)(n,m) = 1

τnm−1

(
τnm −τn−1m−1

τn+1m−1 −τnm−2

)
(11)

and

J (2)(n,m) = 1

τnm+1

(
τnm −τn+1m+1

τn−1m+1 −τnm+2

)
(12)

where we have made use of Jacobi’s identity (5). It is convenient to further define another
series of solutions,

J (3)(n,m) = 1

τnm

(
τn+1m τnm−1

τnm+1 τn−1m

)
. (13)

It is easily found thatJ (1), J (2) andJ (3) transform into one another by the relations,

J (2)(n,m− 1) =
(

0 1
1 0

)
J (1)(n,m + 1)

(
0 −1
−1 0

)
(14)

J (3)(n,m) =
(

0 1
1 0

)
J (1)(n,m + 1)

(
1 0
0 −1

)
. (15)

3. Reduction case I (Bessel function)

In this section, we consider our first example of the integrable reductions of equation (1),

1

ρ
∂ρ(ρP̃

−1∂ρP̃ )− 1

r
∂r(rP̃

−1∂r P̃ ) = 0 (16)

whereP̃ is a 2× 2 matrix (detP̃ = 1) andρ, r are new independent variables.
Let us now derive equation (16) and discuss its determinant solutions. First, instead of

the dispersion relations (7) and (8), we suppose new dispersion relations,(
∂ρ − j

ρ

)
ϕ̃j (ρ, r) = −

(
∂r +

j + 1

r

)
ϕ̃j+1(ρ, r) (17)(

∂r − j
r

)
ϕ̃j (ρ, r) = −

(
∂ρ +

j + 1

ρ

)
ϕ̃j+1(ρ, r). (18)
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Equations (17) and (18) are reduced from equations (7) and (8) by supposing,

ϕj (y, ȳ, z, z̄) =
(
ȳ

y

)j/2(
z̄

−z
)j/2

ϕ̃j (ρ, r) (19)

whereρ = 2
√
ȳy and r = 2

√
z̄(−z). It is found that the operators which appear in

equations (17) and (18) are nothing less than the raising and lowering operators of the Bessel
function, (

∂ρ − n
ρ

)
Jn(ρ) = −Jn+1(ρ) (20)(

∂ρ +
n

ρ

)
Jn(ρ) = Jn−1(ρ) (21)

whereJn(ρ) is the nth Bessel function. Hence, solutions of equations (17) and (18) are
expressed by using thej th Bessel function. For example,

ϕ̃j (ρ, r) = c̃Jj (kρ)Jj (kr) (22)

is a series of solutions of equations (17) and (18), wherec̃ andk are arbitrary constants.
Using the elements of̃ϕj , we constructm×m determinants,

τ̃nm ≡

∣∣∣∣∣∣∣∣∣∣∣

ϕ̃n−m−1 · · · ϕ̃n−2 ϕ̃n−1 ϕ̃n

ϕ̃n−m · · · ϕ̃n−1 ϕ̃n ϕ̃n+1

ϕ̃n−m+1 · · · ϕ̃n ϕ̃n+1 ϕ̃n+2

... · · · ...
...

...

ϕ̃n · · · ϕ̃n+m−3 ϕ̃n+m−2 ϕ̃n+m−1

∣∣∣∣∣∣∣∣∣∣∣
(23)

which have the same structure as equation (6). In a similar way to that in which equations (3)
and (4) were proved in [6], we show in appendix A1 thatτ̃nm satisfy the following ‘reduced’
bilinear forms:(

Dρ +
m− n− 1

ρ

)
τ̃nm · τ̃n+1m−1 = −

(
Dr +

m + n

r

)
τ̃n+1m · τ̃nm−1 (24)(

Dr +
m− n− 1

r

)
τ̃nm · τ̃n+1m−1 = −

(
Dρ +

m + n

ρ

)
τ̃n+1m · τ̃nm−1. (25)

It is easily found that̃τnm also satisfy Jacobi’s identity,

τ̃n+1mτ̃n−1m − τ̃ 2
nm = τ̃nm+1τ̃nm−1. (26)

As the second step, we construct equation (16) from the bilinear forms (24)–(26). In
appendix A2, we show that equation (16) is decomposed into the bilinear forms (24)–(26)
if we choose the matrix̃P as

P̃ = 1

τ̃nm

(
(ρr)nτ̃n+1m (ρr)−mτ̃nm−1

(ρr)mτ̃nm+1 (ρr)−nτ̃n−1m

)
. (27)

Therefore, the determinant solutions of equation (16) are given by equation (27).
As simple examples, we explicitly give solutions forn = 0,m = 0,

P̃ =
(

1 0
ϕ̃0 1

)
(28)

and forn = 0,m = 1,

P̃ = 1

ϕ̃0

 ϕ̃1 (ρr)−1

ρr

∣∣∣∣ ϕ̃−1 ϕ̃0

ϕ̃0 ϕ̃1

∣∣∣∣ ϕ̃−1

 (29)

whereϕ̃j are given by equation (22).
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4. Reduction case II (Legendre function)

As the second example of integrable reduction, we consider,

(ξ2 − 1)3/2∂ξ
[
(ξ2 − 1)1/2P̂−1∂ξ P̂

]− (η2 − 1)3/2∂η
[
(η2 − 1)1/2P̂−1∂ηP̂

] = 0 (30)

whereP̂ is a 2× 2 matrix (detP̂ = 1) andξ , η are new independent variables.
In a similar way as discussed in the previous section, we derive equation (30) and its

determinant solutions. First, instead of the dispersion relations (7) and (8), we suppose new
dispersion relations,

[(ξ2 − 1)∂ξ + (j + 1)ξ ]ϕ̂j = −[(η2 − 1)∂η − (j + 1)η]ϕ̂j+1 (31)

[(η2 − 1)∂η + (j + 1)η]ϕ̂j = −[(ξ2 − 1)∂ξ − (j + 1)ξ ]ϕ̂j+1. (32)

Equations (31) and (32) are reduced form equations (7) and (8) by the following procedure.
First, we suppose

ϕj (y, ȳ, z, z̄) =
[

(cosh̄y)j (cosh̄z)j

(coshy)(j+1)(coshz)(j+1)

]1/2

ϕ̂j (ξ, η) (33)

with variable transformations,

tanhy = −
[
ξ0ξ + i

√
(ξ2

0 − 1)(1− ξ2)
]

(34)

tanhȳ = ξ0ξ − i
√
(ξ2

0 − 1)(1− ξ2) (35)

tanhz = −
[
η0η + i

√
(η2

0 − 1)(1− η2)
]

(36)

tanhz̄ = −
[
η0η − i

√
(η2

0 − 1)(1− η2)
]
. (37)

Secondly, after substituting (33) into (7) and (8), we take the limitsξ0 → 1, η0 → 1. Then,
we obtain equations (31) and (32).

The operators which appear in equations (31) and (32) are found to be the raising and
lowering operators of the Legendre function,

[(ξ2 − 1)∂ξ + (n + 1)ξ ]Pn(ξ) = (n + 1)Pn+1(ξ) (38)

[(ξ2 − 1)∂ξ − nξ ]Pn(ξ) = −nPn−1(ξ) (39)

wherePn(ξ) is thenth Legendre polynomial. By considering the relations (38) and (39),
solutions of equations (31) and (32) are expressed by using thej th Legendre function. For
example,

ϕ̂j = ĉPj (ξ)Pj (η) (40)

is a series of solutions of equations (31) and (32), whereĉ is an arbitrary constant.
By means of the dispersion relations (31) and (32), we can verify that them × m

determinants,

τ̂nm =

∣∣∣∣∣∣∣∣∣∣∣

ϕ̂n−m−1 · · · ϕ̂n−2 ϕ̂n−1 ϕ̂n

ϕ̂n−m · · · ϕ̂n−1 ϕ̂n ϕ̂n+1

ϕ̂n−m+1 · · · ϕ̂n ϕ̂n+1 ϕ̂n+2

... · · · ...
...

...

ϕ̂n · · · ϕ̂n+m−3 ϕ̂n+m−2 ϕ̂n+m−1

∣∣∣∣∣∣∣∣∣∣∣
(41)
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satisfy the bilinear forms,

[(ξ2 − 1)Dξ + (n−m + 2)ξ ]τ̂nm · τ̂n+1m−1 = [−(η2 − 1)Dη + (n +m)η]τ̂n+1m · τ̂nm−1 (42)

[(η2 − 1)Dη + (n−m + 2)η]τ̂nm · τ̂n+1m = [−(ξ2 − 1)Dξ + (n +m)ξ ]τ̂n+1m · τ̂nm−1 (43)

and Jacobi’s identity,

τ̂n+1mτ̂n−1m − τ̂ 2
nm = τ̂nm+1τ̂nm−1. (44)

In appendix B1, we give the proof of equations (42) and (43). From appendix B2, equation (30)
is decomposed into the bilinear forms (42)–(44) provided that we choose

P̂ = 1

τ̂nm

(
w−(2n+1)/4τ̂n+1m w(2m−1)/4τ̂nm−1

w−(2m−1)/4τ̂nm+1 w(2n+1)/4τ̂n−1m

)
(45)

wherew = (ξ2 − 1)(η2 − 1).
As simple examples, we explicitly give solutions forn = 0,m = 0,

P̂ =
(
w−1/4 0
w1/4ϕ̂0 w1/4

)
(46)

and forn = 0,m = 1,

P̂ = 1

ϕ̂0

 w−1/4ϕ̂1 w1/4

w−1/4

∣∣∣∣ ϕ̂−1 ϕ̂0

ϕ̂0 ϕ̂1

∣∣∣∣ w1/4ϕ̂−1

 (47)

whereϕ̂j are given by equation (40).

5. Concluding remarks

In this paper, we have discussed the integrable reductions of theSU(2) self-dual Yang–Mills
equations. The key features of our reduction was the use of Hirota’s method and the raising
and lowering operators of the Bessel and Legendre functions. The reduction resulted in new
integrable equations, the solutions of which were represented by Toeplitz determinants whose
elements were superpositions of the Bessel and Legendre functions, respectively.

Though we specialize to the Bessel and Legendre functions in the present study, the method
developed here may be applicable to other special functions to obtain integrable equations.
We will discuss this subject elsewhere.
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Appendix A1

In this appendix, we give a proof for equation (24). Equation (25) can also be proved in the
same way. First, we introduce a dummy variableλ and define

ϕ̃′j ≡ ϕ̃j (ρ, r)ejλ (A1)
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and

τ̃ ′nm ≡

∣∣∣∣∣∣∣∣∣
ϕ̃′n−m−1 ϕ̃′n−m · · · ϕ̃′n
ϕ̃′n−m ϕ̃′n−m+1 · · · ϕ̃′n+1
...

...
. . .

...

ϕ̃′n ϕ̃′n+1 · · · ϕ̃′n+m−1

∣∣∣∣∣∣∣∣∣ = τ̃nm emnλ. (A2)

By using equation (A1), we rewrite equation (17) as(
∂ρ − 1

ρ
∂λ

)
ϕ̃′j = −e−λ

(
∂r +

1

r
∂λ

)
ϕ̃′j+1 (A3)

and we easily find that

e−mnλ∂λτ̃ ′nm = mnτ̃nm. (A4)

We already know that equation (3) holds provided that the elements of determinants (6) satisfy
the dispersion relation (7). Therefore, if we replace the dispersion relation (3) with (A3), by
using equation (A4), we find that the left-hand side of equation (24) is transformed into[
Dρ +

m− n− 1

ρ

]
τ̃nm · τ̃n+1m−1 =

[
Dρ − mn− (m− 1)(n + 1)

ρ

]
τ̃nm · τ̃n+1m−1

= e−mnλe−(m−1)(n+1)λ

[
Dρ − 1

ρ
Dλ

]
τ̃ ′nm · τ̃ ′n+1m−1

= −e−mnλe−(m−1)(n+1)λe−λ
[
Dr +

1

r
Dλ

]
τ̃ ′n+1m · τ̃ ′nm−1

= −
[
Dr +

m(n + 1)− (m− 1)n

r

]
τ̃n+1m · τ̃nm−1. (A5)

Hence, equation (24) is proved.

Appendix A2

Here we show how to decompose equation (16) into the bilinear forms (24)–(26). First, we
define,

α = (ρr)nτ̃n+1m β = (ρr)−mτ̃nm−1 γ = (ρr)mτ̃nm+1

δ = (ρr)−nτ̃n−1m ε = (ρr)n+m+1τ̃n+1m+1 ζ = (ρr)−n+m+1τ̃n−1m+1 (A6)

θ = (ρr)n−m+1τ̃n+1m−1 κ = (ρr)−n−m+1τ̃n−1m−1 µ = τ̃nm.
Then, from equations (24) and (25), it is found that

Dρµ · θ = −(ρr)Drα · β (A7)

Drµ · θ = −(ρr)Dρα · β (A8)

(ρr)Dργ · α = −Drε · µ (A9)

(ρr)Drγ · α = −Dρε · µ (A10)

(ρr)Dρδ · β = −Drµ · κ (A11)

(ρr)Drδ · β = −Dρµ · κ (A12)

Dρζ · µ = −(ρr)Drγ · δ (A13)

Drζ · µ = −(ρr)Dργ · δ. (A14)
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Secondly, let us suppose,

P̃ = 1

µ

(
α β

γ δ

)
. (A15)

Then, after some lengthy calculations, we find that each component of equation (16) is
decomposed into the following bilinear forms:

ρr

[
1

ρ
∂ρ(ρP̃

−1∂ρP̃ )− 1

r
∂r(rP̃

−1∂r P̃ )

]
11

= 1

4

(
β

α
+
δ

γ

){
∂ρ

[
1

µ2
(ρrDρα · γ −Drε · µ)

−∂r
[

1

µ2
(ρrDrα · γ −Dρε · µ)

]}
+

1

4

(
α

β
+
γ

δ

){
∂ρ

[
1

µ2
(ρrDρβ · δ −Drµ · κ)

]
−∂r

[
1

µ2
(ρrDrβ · δ −Dρµ · κ)

]}
+

1

4

(
δ

β
− γ
α

){
∂ρ

[
1

µ2
(ρrDρα · β +Drµ · θ)

]
−∂r

[
1

µ2
(ρrDrα · β +Dρµ · θ)

]}
+

1

4

(
α

γ
− β
δ

){
∂ρ

[
1

µ2
(ρrDργ · δ +Drζ · µ)

]
−∂r

[
1

µ2
(ρrDrγ · δ +Dρζ · µ)

]}
+

(
∂ρ
ρr

2µ2
∂ρ − ∂r ρr

2µ2
∂r

)[
αδ − βγ − µ2

]
(A16)

ρr

[
1

ρ
∂ρ(ρP̃

−1∂ρP̃ )− 1

r
∂r(rP̃

−1∂r P̃ )

]
12

= −∂ρ
[

1

µ2
(ρrDρδ · β +Drµ · κ)

]
+∂r

[
1

µ2
(ρrDrδ · β +Dρµ · κ)

]
(A17)

ρr

[
1

ρ
∂ρ(ρP̃

−1∂ρP̃ )− 1

r
∂r(rP̃

−1∂r P̃ )

]
21

= ∂ρ
[

1

µ2
(ρrDργ · α +Drε · µ)

]
−∂r

[
1

µ2
(ρrDrγ · α +Dρε · µ)

]
(A18)

and

ρr

[
1

ρ
∂ρ(ρP̃

−1∂ρP̃ )− 1

r
∂r(rP̃

−1∂r P̃ )

]
22

= −[∂ρ(ρrP̃
−1∂ρP̃ )− ∂r(ρrP̃−1∂r P̃ )]11

+

(
∂ρ
ρr

µ2
∂ρ − ∂r ρr

µ2
∂r

)[
αδ − βγ − µ2

]
. (A19)

Therefore, it is proved that equation (16) is decomposed into the bilinear forms (A7)–(A14),
or equivalently, equations (24) and (25).

Appendix B1

Here, we give a proof for equation (42). Equation (43) can be also proved in the same way.
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First, with the dummy variableλ, we define

ϕ̂′j ≡ ϕ̂j (ξ, η)e(j+1)λ (B1)

and

τ̂ ′nm ≡

∣∣∣∣∣∣∣∣∣
ϕ̂′n−m−1 ϕ̂′n−m · · · ϕ̂′n
ϕ̂′n−m ϕ̂′n−m+1 · · · ϕ̂′n+1
...

...
. . .

...

ϕ̂′n ϕ̂′n+1 · · · ϕ̂′n+m−1

∣∣∣∣∣∣∣∣∣ = τ̂nmem(n+1)λ. (B2)

By using equation (B1), we rewrite equation (31) as

[(ξ2 − 1)∂ξ + ξ∂λ]ϕ̂
′
j = −e−λ[(η2 − 1)∂η + η − η∂λ]ϕ̂′j+1 (B3)

and we easily find that

e−m(n+1)λ∂λτ̂
′
nm = m(n + 1)τ̂nm. (B4)

In a similar way to that discussed in appendix A1, by equations (B3) and (B4), the left-hand
side of equation (42) is transformed into

[(ξ2 − 1)Dξ + (n−m + 2)ξ ]τ̂nm · τ̂n+1m−1

= [(ξ2 − 1)Dξ +m(n− 1)ξ − (m− 1)(n + 2)ξ ]τ̂nm · τ̂n+1m−1

= e−m(n+1)λe−(m−1)(n+2)λ[(ξ2 − 1)Dξ + ξDλ]τ̂
′
nm · τ̂ ′n+1m−1

= −e−m(n+1)λe−(m−1)(n+2)λe−λ{τ̂ ′nm−1[(η2 − 1)∂η +mη − η∂λ]τ̂ ′n+1m

−τ̂ ′n+1m[(η2 − 1)∂η + (m− 1)η − η∂λ]τ̂ ′nm−1}
= −[(η2 − 1)Dη − η(m + n)]τ̂n+1m · τ̂nm−1. (B5)

Then, equation (42) is proved.

Appendix B2

We show how to decompose equation (30) into the bilinear forms (42)–(44). We define new
variables,

α̂ = w− 1
2n− 1

4 τ̂n+1m β̂ = w 1
2m− 1

4 τ̂nm−1 γ̂ = w− 1
2m+ 1

4 τ̂nm+1

δ̂ = w 1
2n+ 1

4 τ̂n−1m ε̂ = w− 1
2 (m+n+1)τ̂n+1m+1 ζ̂ = w− 1

2 (m−n)τ̂n−1m+1 (B6)

θ̂ = w 1
2 (m−n−2)τ̂n+1m−1 κ̂ = w 1

2 (m+n−1)τ̂n−1m−1 µ̂ = τ̂nm
wherew = (ξ2 − 1)(η2 − 1). Then, from equations (42) and (43), it is found that the new
variables satisfy the following bilinear forms:

(ξ2 − 1)Dξ µ̂ · θ̂ = −w−1/2(η2 − 1)Dηα̂ · β̂ (B7)

(η2 − 1)Dηµ̂ · θ̂ = −w−1/2(ξ2 − 1)Dξ α̂ · β̂ (B8)

w−1/2(ξ2 − 1)Dξ γ̂ · α̂ = −(η2 − 1)Dηε̂ · µ̂ (B9)

w−1/2(η2 − 1)Dηγ̂ · α̂ = −(ξ2 − 1)Dξ ε̂ · µ̂ (B10)

w−1/2(ξ2 − 1)Dξ δ̂ · β̂ = −(η2 − 1)Dηµ̂ · κ̂ (B11)

w−1/2(η2 − 1)Dηδ̂ · β̂ = −(ξ2 − 1)Dξ µ̂ · κ̂ (B12)

(ξ2 − 1)Dξ ζ̂ · µ̂ = −w−1/2(η2 − 1)Dηγ̂ · δ̂ (B13)

(η2 − 1)Dηζ̂ · µ̂ = −w−1/2(ξ2 − 1)Dξ γ̂ · δ̂. (B14)
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By using the newly introduced variables, if we suppose

P̂ = 1

µ̂

(
α̂ β̂

γ̂ δ̂

)
(B15)

then, we find that each component of equation (30) is decomposed into the following bilinear
forms:

w1/2[(ξ2 − 1)∂ξ (w
−1/2(ξ2 − 1)P̂−1∂ξ P̂ )− (η2 − 1)∂η(w

−1/2(η2 − 1)P̂−1∂ηP̂ )]11

= w1/2

4

(
β̂

α̂
+
δ̂

γ̂

){
(ξ2 − 1)∂ξ

[
1

µ̂2
[w−1/2(ξ2 − 1)Dξ α̂ · γ̂ − (η2 − 1)Dηε · µ̂]

]
−(η2 − 1)∂η

[
1

µ̂2
[w−1/2(η2 − 1)Dηα̂ · γ̂ − (ξ2 − 1)Dξε · µ̂]

]}
+
w1/2

4

(
α̂

β̂
+
γ̂

δ̂

)
×
{
(ξ2 − 1)∂ξ

[
1

µ̂2
[w−1/2(ξ2 − 1)Dξ β̂ · δ̂ − (η2 − 1)Dηµ̂ · κ]

]
−(η2 − 1)∂η

[
1

µ̂2
[w−1/2(η2 − 1)Dηβ̂ · δ̂ − (ξ2 − 1)Dξ µ̂ · κ]

]}
+
w1/2

4

(
δ̂

β̂
− γ̂
α̂

)
×
{
(ξ2 − 1)∂ξ

[
1

µ̂2
[w−1/2(ξ2 − 1)Dξ α̂ · β̂ + (η2 − 1)Dηµ̂ · θ ]

]
−(η2 − 1)∂η

[
1

µ̂2
[w−1/2(η2 − 1)Dηα̂ · β̂ + (ξ2 − 1)Dξ µ̂ · θ ]

]}
+
w1/2

4

(
α̂

γ̂
− β̂
δ̂

)
×
{
(ξ2 − 1)∂ξ

[
1

µ̂2
[w−1/2(ξ2 − 1)Dξ γ̂ · δ̂ + (η2 − 1)Dηζ · µ̂]

]
−(η2 − 1)∂η

[
1

µ̂2
[w−1/2(η2 − 1)Dηγ̂ · δ̂ + (ξ2 − 1)Dξ µ̂ζ µ̂]

]}
+w1/2(ξ2 − 1)∂ξ

[
w−1/2(ξ2 − 1)

2µ̂2
∂ξ (α̂δ̂ − β̂γ̂ − µ̂2)

]
+w1/2(η2 − 1)∂η

[
w−1/2(η2 − 1)

2µ̂2
∂η(α̂δ̂ − β̂γ̂ − µ̂2)

]
(B16)

w1/2[(ξ2 − 1)∂ξ (w
−1/2(ξ2 − 1)P̂−1∂ξ P̂ )− (η2 − 1)∂η(w

−1/2(η2 − 1)P̂−1∂ηP̂ )]12

= w1/2

{
(ξ2 − 1)∂ξ

[
1

µ̂2
[w−1/2(ξ2 − 1)Dξ β̂ · δ̂ − (η2 − 1)Dηµ̂ · κ]

]
−(η2 − 1)∂η

[
1

µ̂2
[w−1/2(η2 − 1)Dηβ̂ · δ̂ − (ξ2 − 1)Dξ µ̂ · κ]

]}
(B17)
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w1/2[(ξ2 − 1)∂ξ (w
−1/2(ξ2 − 1)P̂−1∂ξ P̂ )− (η2 − 1)∂η(w

−1/2(η2 − 1)P̂−1∂ηP̂ )]21

= w1/2

{
(ξ2 − 1)∂ξ

[
1

µ̂2
[w−1/2(ξ2 − 1)Dξ γ̂ · α̂ − (η2 − 1)Dηε · µ̂]

]
−(η2 − 1)∂η

[
1

µ̂2
[w−1/2(η2 − 1)Dηγ̂ · α̂ − (ξ2 − 1)Dξε · µ̂]

]}
(B18)

and

w1/2[(ξ2 − 1)∂ξ (w
−1/2(ξ2 − 1)P̂−1∂ξ P̂ )− (η2 − 1)∂η(w

−1/2(η2 − 1)P̂−1∂ηP̂ )]22

= −w1/2[(ξ2 − 1)∂ξ (w
−1/2(ξ2 − 1)P̂−1∂ξ P̂ )

− (η2 − 1)∂η(w
−1/2(η2 − 1)P̂−1∂ηP̂ )]11

+w1/2(ξ2 − 1)∂ξ

[
w−1/2(ξ2 − 1)

µ̂2
∂ξ (α̂δ̂ − β̂γ̂ − µ̂2)

]
+w1/2(η2 − 1)∂η

[
w−1/2(η2 − 1)

µ̂2
∂η(α̂δ̂ − β̂γ̂ − µ̂2)

]
. (B19)

Therefore, equation (30) follows from the bilinear forms (B7)–(B14), or equivalently,
equations (42)–(44).
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